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Abstract 
 
Crop monitoring and yield forecasting is a crucial step in addressing food security challenges. This is 
particularly important for cereals such as maize and wheat which are grown at large scale and constitute the 
main staple diet for many regions. While, consumption of bread and other wheat products has been on the 
increase, the national wheat production has been on the decline. Therefore, wheat yield forecasting is vital for 
providing advance planning on imports to meet the production deficit. This study sought to develop a winter 
wheat yield forecast model. Observed winter wheat yield data was collected from ARDA farm records for 3 
years 2016-2018. Sentinel 2 imagery data was used to extract NDVI values coinciding with the centre-pivots 
where winter wheat was growing. Maximum NDVI data at anthesis growth stage and observed wheat yield data 
were regressed to develop a predictive equation. The two datasets were correlated (R2 = 0.8, p < 0.001). The 
developed algorithm was used to predict yields and validated using observed yield data. The root mean squared 
error was 0.53 tons ha-1 when averaged observed yield was 6.8 tons ha-1. Therefore, the algorithm successfully 
reproduced observed yields indicating that SENTENEL data could be confidently used in winter wheat yield 
forecasting at field level. Lack of historical observed yield data and satellite imagery from SENTINEL 2 
hindered adequate analysis for longer time frames. The model needs to be further tested as more SENTENEL 
data accumulates.  
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1. Introduction 

Agriculture plays an important role in the supply of cereals. The potential for expansion of 
agricultural land, however, is limited. Increased production of biofuels, land degradation, volatile 
grain markets, limited arable land and water resources, and extreme weather events, such as, severe 
droughts and floods present global agricultural production challenges (FAO, 2017). Accordingly, 
increasing agricultural production efficiency is an essential way of satisfying the future food demand. 
As the human population is projected to reach 9 billion by 2050, cereal demand is expected to rise 
(Vermeulen et al., 2010). The lack of access to food in the past has resulted in hunger, poverty, and 
conflict. As such, food security remains at the forefront on the international agenda. Consequently, 
crop production is increasingly demanding reliable, accurate and comprehensive agricultural 
intelligence. Reliable crop yield forecasts play a significant role in regulating markets and anticipating 
market imbalances, developing agricultural policies and mitigating food shortages efficiently. 
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Reliable forecasting of crop production prior to harvest is a topical problem for many governments 
in the world particularly in Africa (Chahbi Bellakanji et al., 2018). The governments, agribusiness, 
traders and farmers alike are in need of such projections. The governments need crop forecast 
information as a basis for its policy decisions regarding procurement, distribution, buffer storage, 
import and export, setting prices and marketing of agricultural commodities, while agro-based 
industries, trading partners and farmers need them to plan their operations properly. In order to meet 
these needs, most countries, including Zimbabwe issues crop forecasts under the prevalent 
conventional system. Current methods for estimating crop yields involve collecting field data either 
through administrative reporting systems or sample crop assessment surveys. The predictions are, 
however, of a subjective nature as they are based on agricultural officials' eye estimations and 
personal judgment. The estimates of final crop production based on objective crop valuations are of 
limited use, since they become available at a later date after harvesting (Bernardi et al., 2016; 
Greatrex et al., 2009). In this regard, an objective methodology for pre-harvest crop forecasting needs 
to be developed. It involves the development as a forecasting technique of appropriate prediction 
models that have certain merits over the conventional forecasting process. Such merits include the 
objectivity of the forecast and its ability to measure the degree of prediction, which attributes cannot 
be provided by a traditional prediction method. 

Data from satellite based remote sensing (RS) provides timely, cost effective, timely and objective 
information on crop scope, condition, growth and yield in a cost-effective way. As satellite sensor 
systems technologically advanced, images with higher temporal and finer spatial resolutions have 
become available. Classifying such multi-temporal information sets is an efficient and precise means 
of producing crop maps, but techniques that can manage such big and complicated information sets 
need to be established. In addition, a high temporal overview frequency over geographic areas is often 
necessary to properly use RS for agricultural production monitoring. This often, however, limits the 
spatial resolution. RS data is currently being used to estimate crop yields in different parts of the 
world (Löw & Duveiller, 2014). Vegetation indices derived from RS are considered a potential tool 
for enhancing simulations of real time crop yield. For example, Wang et al. (2017) succeeded in using 
the Normalised Difference Vegetation Index (NDVI)  as a vegetative activity strength indicator 
represented indirectly by observed chlorophyll activity. Low NDVI values are associated with the 
absence of vegetation, inactive vegetation or vegetation stressed by drought or diseased vegetation 
(Páscoa et al., 2018). Routine updated information on crop area and spatial distribution and expected 
yields are a basic requirement for agriculture surveillance.  

This research will focus on winter wheat yield forecasting in Zimbabwe`s semi-arid regions. 
Wheat (Triticum aestivum L.) is an important crop in many parts of the world and is the second 
largest dietary component after maize in Zimbabwe. In addition, wheat is grown in winter in 
Zimbabwe under irrigation, mainly by commercial farmers. It is therefore, crucial to predict wheat 
yields as the production of wheat has declined due to climate variability, production costs and other 
environmental factors. 

The estimation of crop yield remains a problem for the majority of developing countries, 
particularly in countries such as Zimbabwe that are primarily dependent on agriculture for food 
security (Immitzer et al., 2012). Accurate and timely evaluation of crop yields is an essential step to 
ensure a sufficient supply of food. Remote sensing, on the other side, provides some possibilities for 
generating prompt and precise crop output information, enabling crop forecasting across space and 
time and under multiple agro-climatic circumstance. It offers farmers, government departments, and 
policy makers in general advance information to plan for either deficit surplus in production. Such 
predictions warn the decision makers about potential reduction in crop yields and allow timely import 
and export decision (Svotwa et al., 2014). In Zimbabwe, such studies were carried out mostly at 
regional level covering large areas using low-resolution imagery, for example tobacco crop yield 
forecasting in Zimbabwe using high resolution MODIS imagery by Svotwa et al.(2014). At the Farm 
level, though, very little has been done. Therefore, this research attempts to assess the wheat growth 
using NDVI trends, develop an NDVI wheat yield forecast model and evaluate the developed wheat 
yield model for ARDA Antelope farm in Matobo district in Zimbabwe using high resolution 
SENTINEL imagery.  
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2. Methods and Materials 

 
2.1 Study area description 
2.1.1 Geographic location and climate of Matobo and Mat South Province 
This study was conducted in Matobo district in Matebeleland South Province of Zimbabwe.  The 
Matobo district receive rainfall ranging from 450 mm to 650 mm per annum(Love et al., 2005). The 
period of precipitation extends from October to April. The soils in Matobo district can be split into 
three types: slightly deep, coarse grained kaolinitic sands obtained from granites and Limpopo 
gneisses, very deep to slightly deep clays and loams created from greenstone belts and very deep 
basalt sands(Love et al., 2005). These soils have low fertility.  The study was located at the ARDA 
Antelope Farm, (28.4960 N and -21.070 W) (Figure 1). The study farm plots were all under centre 
pivot irrigation. Red clay soils are the predominant soil type at ARDA antelope. However, some areas 
of the farm have sandy loam soils, mainly on the on the eastern side of the farm. Currently four pivots 
sit on the sandy loam soils (Centre pivot 14-17 in figure 3). The remaining 12 are sitting on red clay 
soils. 
 

 
Figure 1: Study Area 
 
Agricultural and Rural Development Authority (ARDA) is a government of Zimbabwe parastal with a 
main mandate to ensure food security in Zimbabwe. ARDA is therefore authorized to promote its 
mandate, which is concentrated on achieving economic growth and development driven by 
agriculture. ARDA Antelope is one of 21 ARDA estates across Zimbabwe. The Estates commercial 
operations involve production of various crops and livestock. Currently the ARDA Antelope is under 
a Public–Private Partnership (PPP) Arrangement, since 2014. 

Centre pivots 
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2.1.2 Area and Irrigation systems 
ARDA antelope has a gross area of about 3000 ha. At present, about 700 ha of land is under irrigation 
by the Estate and approximately 850 ha is being utilised under the out-grower system. Plans are in 
place to expand the area under irrigation to a total of 1000 ha. Initially the Estate was making use of 
flood system on about 150 ha and later changed to sprinkler irrigation system. At present the irrigation 
system   has been changed to centre pivots since the year 2015. The process of Centre pivots 
installation was done in phases with the first 12 centre pivots functioning since 2016. As shown in 
figure 2, only 12 pivots have been utilised for winter wheat production in 2016 and 2017. In 2018, 14 
centre pivots were utilised for wheat production as shown in figure 2.  A total of 16 centre pivots have 
been set up to date and are all being utilised. The pivots, however vary in sizes from a minimum 30 ha 
to about 45 ha pivot area. 
 
2.1.3 Cropping programme 
In terms of the cropping programme, the Estate produces both in summer and winter under irrigation. 
In summer Irrigation provides supplementary water in dry spells. Maize is the main summer crop. 
Soya bean is also produced a secondary summer crop. While in winter wheat is the main crop grown. 
All cropping is done on commercial basis, with clear guideline on crop management. The planting 
period for winter wheat is generally from the third week of April to mid-May. Harvesting of winter 
wheat commences around second to third week of September. Seed select wheat variety was grown 
on the centre pivot for the study years. Fertiliser, and crop protection was done uniformly for all the 
centre pivots. For example, rate of fertiliser (both compound D and urea) per unit ha was applied 
uniformly for all the centre pivots. 
 

  
Figure 2: NDVI image for specific dates in July 2016, 2017 and 2018 showing number of Centre pivots utilised 
for winter wheat production 
 
2.2 Data collection and analysis 
2.2.1 Wheat yield data 

Seasonal wheat yield data for 3 seasons (2016–2018) were used for this study. The data was only 
limited to 2016-20018 seasons because SENTINEL satellite images are only available since 2016.  
The data were obtained from ARDA antelope Farm records. The Farm has 16 centre pivots were 
wheat production has been practiced. The centre pivots vary in sizes ranging from 35-45 ha. Each 
centre pivot was taken as a separate study plot for this study. Therefore, the unit of analysis is the 
centre pivot.  For model, development, and model validation the study utilized only 12 centre pivots 
which were consistently planted for the three seasons. Yield data from two seasons 2016 and 2018 
was used for model development whilst yield data for 2017 was used for model testing and validation. 
The study limitation was the availability of satellite SENTINEL imagery data, which is only available 
from May 2016.Furthermore the farm has winter wheat records for the same study period only. 
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2.2.2 Remote sensing dataset 

The study used Sentinel-2A satellite images. The available Sentinel-2A Level-1C (TOA) products 
were examined for cloud coverage in the study area. Only cloud-free images were obtained from earth 
explorer USGS website (https://earthexplorer.usgs.gov/). Overall, 32 cloud free Sentinel-2A scenes of 
tile T35KPS (Table 1) were acquired over the study area from May to September for 2016 to 2018, a 
period which coincides with winter wheat cropping season in Zimbabwe. 
 
Table 1: Available cloud-free Sentinel-2 data for the study area in 2016, 2017 and 2018 

Year Time 
steps 

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 

2016 Date Jul  
19 

Jul 
29 

Aug 
08 

Aug 
18 

Aug 
28 

Sep 
07 

Sep 
27 

         

2017 Date May 
15 

Jun 
4 

Jun 
14 

Jul 
24 

Aug 
13 

Aug 
23 

Sep 
12 

Sep 
22 

        

2018 Date May 
25 

Jun 
4 

Jun 
9 

Jun 
14 

Jun 
19 

Jun 
24 

Jun 
29 

Jul 
14 

Jul 
29 

Aug 
3 

Aug 
8 

Aug 
13 

Aug 
23 

Sep 
2 

Sep 
22 

Sep 
29 

 
NDVI computation 

NDVI value can represent the level of yield for each pixel. A regression function of NDVI can 
therefore explain the yield. Total yield is a product of the model prediction per unit area and the total 
area. Some literature reviews indicate three kinds of NDVI factors that can be used in yield 
forecasting: maximum NDVI, average NDVI, and cumulative NDVI (Study On The Crop Condition 
Monitoring Methods With Remote Sensing, The International Archives of the Photogrammetry, 
Remote Sensing And Spatial Information Sciences, 2008). The cumulative NDVI and a corresponding 
average NDVI for the same period are correlated because the linear nature of operations. For this 
study the average NDVIs and the maximum NDVIs were utilized as input data for the winter wheat 
forecasting model. 

A study by Meng and Wu, (2008) showed that maximum NDVI variables are highly correlated to 
the final yields. In contrast, changes in NDVI values outside the period of wheat production perhaps 
do not have a positive effect on the yield (Prasad et al., 2006). Wheat yield is mainly determined 
during the stage of the anthesis (i.e. the highest phonological development phase). Therefore, wheat 
condition during anthesis phase plays a critical part in determining the yield levels. Wheat anthesis 
stage occurs around mid-July and early August. At this point, the link between yield and reflectance is 
powerful. Therefore, NDVIs are a good indicator of wheat yield in the medium- to-late growth period. 
In view of this background, this study utilized the maximum NDVI for developing the wheat yield 
forecasting model. While both average NDVI and maximum NDVI were used on tracking the wheat 
growth. 

NDVI was calculated for Sentinel-2A scenes using band 8A (NIR) and band 4 (Red). For each 
downloaded SENTINEL image, the NDVI formula was as follows:  

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅)                                                                                                            (1) 
     
Where:  NIR = reflectance in the Near Infrared band 
            RED = reflectance in the Red band. 
NDVI is used extensively to predict plant greenness correctly, i.e. the overall chlorophyll content on 
crops.  
 
2.2.3 Model development 

Linear regression model was developed for the 12 center pivots between the wheat observed yield 
and the maximum NDVI. The observed yield was taken to be an independent variable and the 
maximum NDVI was taken to be a dependent variable according to: 
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𝑌𝑌𝑌𝑌 = 𝑎𝑎 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑏𝑏                                                                                                                                              (2)  
     
Where: 
 Yp  is the predicted yield; 
a is the coefficient  
and b is the constant for winter wheat yield.  
 

The maximum NDVI during the wheat-growth period (NDVImax) for each centre pivot was 
extracted from the ARDA farm remotely sensed images for the 2016 and 2018 seasons using raster 
and zonal statistics in a GIS environment. The extracted maximum NDVI was used in developing the 
model. In order to extract maximum NDVI field sample were digitised for each centre to avoid field 
edge and ensure data was collected from inside the pivot area. The maximum NDVI is equal to the 
peak value of the seasonal NDVI profile. Figure 3 shows digitised sample plots for extracting NDVI 
values. In order to evaluate the models in such a way that the best fitting model was chosen, different 
models were compared (logarithmic, and exponential). The linear model was found to be optimal for 
winter wheat yields and NDVI from research carried out in other areas (Huete et al., 2011) , therefore 
a linear model was chosen for this study. 

 

 
Figure 3: Digitised sample fields for extracting NDVI data 
 
2.2.4  Model evaluation metrics 

In order to validate the model efficiency, statistical tests were conducted on 2017 data. The 2017 
yield and imagery dataset were not used for model development.  The goodness of the model's fitness 
and the proportion of variance were explained using the coefficient determination. P-values were used 
to assess the significance of the model. In addition, using the root mean squared error (RMSE), the 
model was also evaluated for accuracy. Diagnostic plots were used to compare observed yield and 
predicted output. Furthermore, a quantile-quantile (Q-Q) plot was also used to assess the closeness of 
the theoretical distributions to the model structure. A strong linear pattern is indicative of a normal 
distribution of the dataset while outliers can be visually detected. The validation methods also helped 
to comprehend the fundamental patterns in the data. 

 
2.2.5 Model testing 

The observed yield data for 2017 was not used for model development and validation. Therefore, 
NDVI dataset for the year 2017 was used for model testing on 12 centre pivot plots. The developed 
model was used to predict the wheat yield for 2017 season. The difference between the forecasted and 
observed yields was used to calculate the percentage bias for each pivot and the overall error. The 
percentage bias was used to evaluate of the accuracy of the 2017 forecasted yields. Values less 10 
percent bias were taken to indicate good model performance with values close to zero indicating high 
levels of accuracy. Furthermore, a t- test statistic was also carried out to test the developed wheat 
forecasting model. This was done to validate and triangulate the results from the percent bias test 

N 
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Figure 4: Seasonal average and maximum NDVI trend line for 2017 and 2018 
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3. Results and Discussion 
2.3 NDVI variations across growth stages 

The NDVI obtained from the SENTINEL image data showed differences in distribution and size 
between the different center pivot sample plots (Figure 4). Times-series of maximum and average NDVI 
values for the different centre pivots for 2017 and 2018 are shown in Figure 4. Each centre pivot had a 
different NDVI profile for the selected dates in 2017 and 2018. The NDVI values ranged between 0.30 
and 0.89. The NDVI values consistently increased with crop growth stages in early season and it reached 
a maximum by mid-season. The results indicate that NDVI values accurately characterized the 
generalized wheat crop growth curve.  This phenomenon was similar to observations made by Prasad et 
al. (2006) on vegetation with lower amount of green biomass due to either water stress or to normal 
senescence through the mid-grain filling stage. The mean NDVI value was 0.35 for both 2017 and 2018 
seasons in early May. This is because at this growth stage early jointing will be taking place.   

With crop growth, the NDVI values progressively increased to a plateau between joining and anthesis 
growth stages by mid-season.  The maximum NDVI values were around 0.89 at mid-season with an 
average value of 0.87.  The NDVI values decreased end of the season which the mid-grain filling stages 
for winter wheat. This is attributed to leaf senescence and change in colour from green to grey leaves. 
This results in an increase reflectance of the red band and reduction in reflectance of NIR band. The mean 
NDVI values in late season were 0.58 under irrigated conditions for all pivots and both 2017 and 2018. 

Wheat was not grown on area under centre pivot 2 and 3, therefore the NDVI profiles were 
generally on the lower side (ranging from 0.2 to 0.5) for 2018 season. The maximum NVI for 2018 
season is between the 14th and 29th of July 2018. 

 
2.4 Relationship between wheat yield and NDVI data  

The most critical stage in irrigated wheat growth is the anthesis (flowering) according to studies 
carried out in other regions (Mashaba et al., 2017;Lopresti, Di Bella and Degioanni, 2015). Therefore, 
this research adopted the anthesis wheat growth stage for model development. The linear relationship 
between the average yield and average NDVI is represented by equation: Yield =70.8NDVImax -54.643 
(figure 5).  

 
Figure 5: Yield versus maximum NDVI at anthesis stage (end of July 2017)  
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The ranges of values for the model were 0.8–0.89 during anthesis and mid-grain filling stages. 
However, other variables such as temperature, moisture content, and soil condition can also be considered 
in order to improve model accuracy because of lack of consistent data for these variables. A positive 
correlation (r2 of 0.80) was noted between maximum NDVI and wheat yield at anthesis stage. These 
results are consistent to findings by Marti et al. (2007) and Royo et al. (2003) which have also shown a 
positive correlation between NDVI and wheat yield at anthesis and mid-grain filling stage. These values 
fall within the range for winter wheat of 0.2–0.8 indicated by (Sabaghnia et al., 2012). 
 
2.5 Model validation and testing 

The model was validated on the basis of the relation between observed and forecasted yield values 
(Figure 6). The developed model was used to predict the 2017 wheat yields. The observed and model 
predicted yield for 2017 were compared. The model root mean square error of 0.53 tons/ha was obtained 
from the comparison. The calculated p and r2 values were 0.000015 (p<0.001) and 0.80 respectively, 
suggesting a positive relationship between wheat yield and NDVI. These findings are comparable to those 
recorded in Northern Buenos Aires Province, Argentina by   Lopresti, Di Bella and Degioanni, (2015) and 
at Central Free Sate by Mashaba et al., (2017), who obtained an r2 value of 0.75 for winter wheat yield. 
The similarity could be due to the fact that both areas have comparable seasonal cycles and winter 
production periods. These circumstances are similar to those at ARDA Antelope farm. A random 
distribution of the residuals was observed, which implies that the linear model corresponds perfectly with 
wheat yields to NDVI (Figure 6).  

In general, the residuals are distributed normally and lie in close proximity to a straight line 
 

 
 
Figure 6: Observed wheat yield as a function of predicted yields and Residual plot of the wheat yield model 
 

The model was also tested using percentage bias between observed and predicted yield (Table 2). The 
model overestimated yield in centre pivot 10 and understated yield in centre pivot 4 because the 
percentage bias values are greater 10% as shown in table 2 However, in all other center pivots, the model 
performed well since the percentage bias are within a ±10% limit.  
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Table 2: Percentage bias for predicted and observed yield for 2017 season 
Zone ID Max NDVI Observed 

wheat yield 
(tons/ha) 

Predicted wheat 
yield 
(tons/ha) 

Difference in 
observed and 

predicted 
(tons/ha) 

% Bias 

Centre Pivot 1 0.89 7.60 8.15 -0.56 -7.35 
Centre Pivot 2 0.87 6.73 7.10 -0.37 -5.48 
Centre Pivot 3 0.85 5.27 5.60 -0.32 -6.16 
Centre Pivot 4 0.84 3.81 4.56 -0.75 -19.74 
Centre Pivot 5 0.89 7.74 8.13 -0.39 -5.09 
Centre Pivot 6 0.86 6.50 5.89 0.61 9.32 
Centre pivot 8 0.88 8.01 7.84 0.18 2.19 
Centre Pivot 9 0.87 7.21 7.13 0.08 1.07 
Centre Pivot 10 0.85 6.85 5.79 1.06 15.41 
Centre Pivot 11 0.88 8.08 7.84 0.25 3.05 
Centre Pivot 12 0.87 7.13 6.83 0.30 4.25 
Centre Pivot 13 0.86 7.12 6.52 0.61 8.55 
 

A non-parametric t- test was carried out to further validate the model predicted yield data (Table 3). 
An assumption that the sample data had equal variances was made. The null hypothesis (Ho) was that 
there was no significant mean difference between predicted and observed yield data. The alternative 
hypothesis was that the means of the two data sets were significantly different. At 5% level of 
significance (p – value = 0.908), it was found that there was no significant difference between the two 
means, thus there is no significant difference between observed and predicted yield data. 
 
Table 3:t test statistics to validate the yield prediction model 

T-test: two-sample assuming equal variances   
  Observed Yields Predicted yield 
Mean 6.837582621 6.781329984 
Variance 1.491057724 1.305164459 
Observations 12 12 
Hypothesized Mean Difference 0  
P(T<=t) two-tail 0.908287653  
t Critical two-tail 2.073873068   

 
4. Conclusion and Recommendations 

In this study, 3 conclusions can be drawn: 
i. NDVI can be used as a robust proxy/ indicator variation across wheat growth stages.  
ii. The model was found to be reasonably accurate and reliable as indicated by no significant 

difference between means of both predicted and observed yields and a root mean square error of 
0.53 tons/ha when averaged observed yield was 6.8 tons/ha. 

iii. The paper shows that there is potential to apply remotely sensed wheat forecasting models at 
local scale for wheat yield prediction.  

The study recommends more research and broader testing with more yield datasets for at least five 
years is necessary as more SENTENEL data accumulates. 
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