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Abstract— Dispersion parameter should be the unity in the case of the univariate Bernoulli data. But there may be some deviations if 
there is a sequence of the Bernoulli outcomes, that may lead to Binomial case. Over (lower) dispersion criterion is happened if the 
variance of actual response, var(y), is more (less) than the nominal variance as a function of the mean, var(μ). This paper presents the 
mathematical form for estimating and modifying the dispersion parameters for the outcome correlated binary (0,1) Big data, with 
scalar and matrix values, in Bivariate case. The impact of the estimates of dispersion parameter on the outcome correlated binary Big 
data is indicated.  
   In general, the aim is making the dispersion parameters are close or equal to the unity. The purpose is controlling of marginal 
probabilities of the correlated binary outcomes. Since the increasing of marginals, increases the values of dispersion estimates. We can 
use these property to decrease the over-dispersion to close to the unity. The R program and its packages, is used to generate and fit 
the binary correlated Big data. Scaling and Roots techniques that depend on the estimates of dispersion parameters are used to 
modify the outcome correlated binary data. We have found that Scaling and Roots processes have similar results and good effects, 
only for binary Big data. Since the manner is different when deal with Small observations. 
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I. INTRODUCTION 
The estimation of dispersion parameter in the univariate case can be obtained easily using the Pearson’s Chi-square or the 

Deviance function. The over(lower) dispersion can be deduct from the equation: var( ) var( )y φ µ= where φ is the 

univariate dispersion parameter. When 1φ >  this implies the over-dispersion, while 1φ <  implies the lower-dispersion 
(McCullagh and Nelder, 1989). Many studies have devoted the dispersion criteria in Univariate case, namely, when the 
Binomial data are used. It is difficult to extend these methods to estimate the dispersion parameters in Bivariate case. Because 
in Bivariate case, the association between the correlated response variables may be happened. So, we must take this association 

into account when estimate the dispersion parameter. In Independence case, the estimate of dispersion parameter φ is 
performed as in the univariate case.  

Some studies have presented attributes of the overdispersion problem as Smith and Heitjan (1993) provided an appropriate 
statistical tool to detect extra Binomial variation.  
   Cook and Ng (1997) described Bivariate logistic-normal mixture model for over-dispersed two state Markov processes. 
Saefuddin et al. (2011) showed the effect of overdispersion on the hypothesis test of Logistic regression. Simple method 
proposed by William (1982) was used to correct the effect of overdispersion by taking the inflation factor into consideration. 
When the overdispersion does not occur or very small overdispersion occurs, dispersion parameter φ  will be approximately 

equal to zero, so iY  exactly follows Binomial distribution, ),( iinBin π , and )(1=)( iiii nYVar ππ − , Collett (2003). The 

value of Pearson’s Chi-square statistic depends on φ̂ so, iteration process, is needed to find the optimum value, as a test of φ̂ .  
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Davila et al. (2012) introduced a new approach for modeling Multivariate marginals overdispersed Binomial data. They 
illustrate this approach by analyzing the data using the Gaussian Copula with Beta-Binomial margins. 

In order to model the overdispersion, they used the Beta-Binomial model, a generalization of Binomial distribution, Casella 
and Berger (2002). Hurvich, and Tsai (1989) presented a regression and time series model selection in Small samples. 
Vectorized Generalized Additive Model (VGAM) introduced by Yee and Wild (1996) and implemented later by Yee and 
Others (2003-2015). Vectorized Generalized Linear Model (VGLM) is used in the linear case. For fitting the correlated binary 
data, we used the VGAM(VGLM) conditional functions and the loglikelihood function of Alternative Quadratic Exponetial 
Form (AQEF) that proposed by  Elsayed et al. (2013).    
 
The loglikelihood function for Bivariate AQEF measure is  
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Where, the 1 2,β β  is regression parameters, α is the association parameters. 
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The estimate of dispersion parameters for Bivariate correlated binary data can be obtained using different methods. The first 
one when the dispersion parameter is scalar, the second one when we have a matrix values of dispersion parameters. These 
estimates can be extended to Trivariate and Multivariate correlated binary data.  

Elsayed (2016) has proposed a new approach for identifying and estimating the dispersion parameters using Equation (1). In 
this paper, we are used this approach to modify the correlated binary outcomes Big data using Roots and Scaling techniques for 
VGLM and VGAM algorithms. 
 

This paper can be organized as follows: The dispersion parameters in Bivariate case is presented in Section 2. Numerical 
results are presented in Section 3. Results discussion are presented in Section 4. Finally, the conclusion is presented in Section 
5. 
 

II. DISPERSION PARAMETERS IN BIVARIATE CASE 
In this section, we determine the identification and estimation of a fixed value of dispersion parameter φ , and also a matrix 

of dispersion parameters to extend the effect of overdispersion on the analysis of Bivariate correlated binary data.  
 
A. Scalar Bivariate Dispersion Parameters 

 
We can use the variance-covariance matrix of 1Y  and 2Y  to estimate a scalar dispersion parameter, φ , in Bivariate binary 

outcomes. The estimator of φ , for n  observations, is  
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Where p is number of parameter estimates.  

Under independence, this quantity follows, approximately 
2

pn−χ .  
Estimator of φ  in the independence case is  
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B. Matrix Of Bivariate Dispersion Parameters  
 

Now, we use different values for dispersion parameters, 122211 ,, φφφ  and 21φ , here, 2112 = φφ .  
Estimators of dispersion parameters matrix are:  
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We can correct the correlated data using the estimates of dispersion parameters 2211
ˆ,ˆ φφ  as: 
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III. NUMERICAL RESULTS 

In this section, we generated correlated binary Big data using the "bindata" package in R program in two cases. First case we 
generate 10,000 observations with a marginal probabilities of the first and second correlated binary variables Y1 and Y2 of 0.5 
and 0.6 respectively, and the joint probability between two correlated binary variables of 0.25. Second case we generated 
500,000 observations with the same conditions. To measure the effect of dispersion parameters on the fitting of correlated 
binary Big data, first we will find the estimates of dispersion parameters, then will use it to modify the correlated binary 
outcomes.  

Then we make another fit to detect the effect of dispersion parameters this is done using the VGAM package and the "vglm" 
function. Finally, as a regression problem we must need to generate the covariates also, so we can generate one or more 
independent variables. In our cases, three covariates are sufficient to use it. We are generated a three independent variables X1, 
X2 and X3, using the "rpois" function with parameters λ = 3,4 and 5 respectively. 
 
A. Generating 10,000 Observations 

In this subsection, first we estimate the dispersion parameters 1,1 22
ˆ ˆ,φ φ  for two correlated binary variables Y1 and Y2 

using the equation (5).   

The estimated values are  11 22
ˆ ˆ0.7289757 , 0.9566033φ φ= = . 

In the next two subsections, we apply the VGLM and VGAM algorithms to fit the binary Big data. 
 
1) Vglm Algorithm 

In this subsection, we are used the VGLM technique to fit the two correlated variables 1 2,Y Y with three covariates 

1 2 3, ,x x x  and the conditional function "loglinb2" as a family technique, we have the regression equation: 

1 2 1 2 3cbind( , ) ~ , family=loglinb2y y x x x+ + .  
Table (1) presents the obtained results in this case. 
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Table 1 
VGLM Results before Modifying the Correlated Data (n = 10,000). 

Coefficeints Estimate Std. Error Zvalue Pvalue 
Intercept:1 0.497186    0.078773    6.312 2.7 6e-10 

*** 
Intercept:2 0.943342    0.079396   11.881   2e-16 

*** 
Intercept:3 -0.847908   0.041987 -20.195   2e-16 

*** 
x1:1 -0.001035    0.011848   -0.087     0.930     
x1:2 -0.008716    0.012122   -0.719 0.472     
x2:1 0.002418 0.010198    0.237     0.813     
x2:2 0.003468    0.010448    0.332 0.740     
x3:1 -0.001658    0.009120   -0.182     0.856     
x3:2 -0.010792    0.009331   -1.157     0.247     
Loglikelihood = 
-13418.07 

AIC = 
26854.14 

BIC = 
26919.03 

 
Now we can modify the correlated outcome binary Big data using two methods.  

First one by divide the correlated data by each square root of the estimate of dispersion parameter as:  
1 2

1 2

11 22

new , new
ˆ ˆ

y yy y
φ φ

= =  

Re-estimate the dispersion parameters, we have:  11 22
ˆ ˆ0.7842686 , 0.9379244.φ φ= =  

Table (2) presents the obtained results in this case. 
 

Table 2 
VGLM Results after Modifying the Data using Roots Technique (n = 10,000). 

Coefficients Estimate Std. Error Zvalue Pvalue 
Intercept:1 1.031456    0.082052   12.571    2e-16 *** 
Intercept:2 1.238264    0.082818   14.952    2e-16 *** 
Intercept:3 -1.094477 0.044791 -24.435    2e-16 *** 
x1:1 -0.001400    0.012130   -0.115 0.908 
x1:2 -0.009159    0.012333   -0.743     0.458     
x2:1 0.003013    0.010441    0.289 0.773     
x2:2 0.003833    0.010631    0.361     0.718     
x3:1 -0.002194    0.009337   -0.235     0.814     
x3:2 -0.011376    0.009493   -1.198     0.231     
Loglikelihood 
= -13119.44 

AIC = 
26256.87  

BIC = 
26321.76 

 
Second one: by scaling the correlated outcomes and divide it by the square root of the estimates of dispersion parameters for 
each variable:  

1 1 2 2

1 1 2 2
1 2

11 22

Min( ) Min( )
Max( ) Min( ) Max( ) Min( )new , new

ˆ ˆ

y y y y
y y y yy y

φ φ

− −
− −

= =  

 

The new estimates of dispersion parameters are: 11 22
ˆ ˆ0.7842686 , 0.9379244φ φ= = . 

The obtained results in this case are similar to the results of the first case. This can be arised only in the case of  Binary Big 
data. 
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2) VGAM Algorithm 
   In this subsection, we will use the VGAM technigue to fit the correlated outcome binary Big data with each coveriate using 

the formula : 1 2cbind( , ) ( ), family=binomialffiy y s x= , 1, 2,3i = .  
 
For the variable X1, we have: 
   Dispersion Parameter for binomialff family = 1. 
Residual deviance =  27246.69 ,  Loglikelihood = -13623.35 . 
 
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x1):1       1.8992 0.59313 Intercept -0.0236345616 0.465219810 
s(x1):2       6.9189 0.07237 s(x1) 0.0006750673 -0.009068381 

 
For the variable X2, we have: 
   Dispersion Parameter for binomialff family = 1. 
Residual deviance =  27247.65 ,  Loglikelihood = -13623.83 
 
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x2):1       4.0055 0.260755 Intercept -0.028402565 0.425116981 
s(x2):2       4.4297 0.219104 s(x2) 0.001705123 0.003213371 

 
For the variable X3, we have: 
   Dispersion Parameter for binomialff family = 1. 
Residual deviance =  27247 ,  Loglikelihood = -13623.5 
 
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x3):1       4.0041 0.260523 Intercept -0.0238968151 0.49059366 
s(x3):2       3.8802 0.275484 s(x3) 0.0004585959       -0.01052149 

 
B. Generating 500,000 Observations 
   In this section, we follow the same way as in n =10,000 case, just we change n to be 500,0000 observations. 
 
1) Vglm Algorithm 

   The estimates of dispersion parameters for the two correlated binary outcomes before modifying these data are:  
11 22
ˆ ˆ,0.7389803 0.935542φ φ= =  

  Table (3) presents the obtained results in this case. 
 

Table 3 
VGLM Results before Modifying the Data (N = 500,000). 

Coefficeints Estimate Std. Error Zvalue Pvalue 
Intercept:1 0.4982789   0.0110077 45.266 2e-16 *** 
Intercept:2 0.8344309   0.0110897 75.244    2e-16 *** 
Intercept:3 -0.8391459   0.0059161 -141.842    2e-16 *** 
x1:1 -0.0011770   0.0016671    -0.706 0.480 
x1:2 -0.0005859   0.0017009 -0.344 0.730     
x2:1 0.0011614 0.0014455 0.803 0.422     
x2:2 0.0015757 0.0014751 1.068 0.285 
x3:1 0.0018118 0.0012903 1.404 0.160 
x3:2 0.0002754 0.0013165 0.209 0.834 
Loglikelihood = -672913.4   AIC = 1345845 BIC =1345945  
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    After modification using Roots technique, we have the estimates: 

11 22
ˆ ˆ,0.6531706 0.9084052φ φ= =  

    Table (4) presents the obtained results in this case. 
 

Table 4 
VGLM Results after Modifying the Data using Roots Technique (N = 500,000). 
Coefficeints Estimate Std. Error Zvalue Pvalue 
Intercept:1 1.0293541   0.0114983 89.522 2e-16 *** 
Intercept:2 1.1583903   0.0116052    99.817 2e-16 *** 
Intercept:3 -1.0965583 0.0063398 -172.965    2e-16 *** 
x1:1 -0.0014467   0.0017090    -0.847    0.3973 
x1:2 -0.0007272 0.0017360    -0.419 0.6753     
x2:1 0.0014501 0.0014821     0.978 0.3279     
x2:2 0.0017740   0.0015056     1.178    0.2387     
x3:1 0.0022135   0.0013231     1.673    0.0943 
x3:2 0.0004558   0.0013437     0.339 0.7344     
Loglikelihood = -655906.3 AIC = 1311831 BIC = 1311931 

 
   Using the scaling method, to modify the data, we obtained the estimates of dispersion parameters as: 

11 220.7944488 , 0.90 0 2ˆ ˆ 84 5φ φ= = . 
   As in the n =10,000 observations, the VGLM results in this case are the same as n = 500,000. This can be arised only in 
Binary Big data. 
 
2) Vgam Algorithm 

   As in the previous subsections, we obtained the next results for 500,000 observations: 
 
For the variable X1, we have: 
   Dispersion Parameter for binomialff family =1. 
Residual deviance = 1366441,  Loglikelihood = -683220.5.   
 
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x1):1       7.2587 0.064097 Intercept 0.006258790 0.4034463123 
s(x1):2       4.6824 0.196549 s(x1) -0.001056217 -0.0003439202 

 
For the variable X2 , we have: 
    
Dispersion Parameter for binomialff family =1. 
Residual deviance = 1366445,  Loglikelihood = -683222.3.     
 
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x2):1       3.4349 0.32925 Intercept -

0.0003177063 
0.397069469 

s(x2):2       4.1404 0.24668 s(x2) 0.0008509257 0.001335797 
 
For the variable X3 , we have: 
   
 Dispersion Parameter for binomialff family = 1. 
Residual deviance = 1366427,  Loglikelihood = -683213.4.  
   
Approximate Chi-squares for Nonparametric Effects 

Coefficients Chisq Pvalue Coefficients E(y1) E(y2) 
s(x3):1       5.9847 0.112357 Intercept -0.005693456 0.4029313497 
s(x3):2       18.5355 0.000339 s(x3) 0.001756106     -0.0001054667 
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IV. RESULTS DISCUSSION 
    
   The results in Section 3 can be summarized and combined for two the cases of correlated outcome binary Big data as follow: 
 

A. VGLM  
   In general, the standard errors tend to be lower when we are modifying small data. For the two cases of correlated binary Big 
data, the standard errors are increasing after modifying the data using Roots or Scaling techniques for all estimators. 
 

n = 10,000 
Case 

11φ̂  22φ̂  
Loglikelihood AIC BIC 

Before 0.7289757 0.9566033 -13418.07 26854.14 26919.03 
Roots 0.7842686 0.9379244 -13119.44 26256.87 26321.76 

Scaling 0.7842686 0.9379244 -13119.44 26256.87 26321.76 

   For n =10,000, the value of 11φ̂ is increasing after modifying (Roots and Scaling) the data. In the other hand the value of 11φ̂ is 
decreasing after modifying (Roots and Scaling) the data. All values of Loglikelihood, AIC and BIC is decreasing after 
modifying the data. This reflects that these measures are good after modifying the binary correlated outcomes. 
 

n = 500,000 
Case 

11φ̂  22φ̂  
Loglikelihood AIC BIC 

Before 0.7389803 0.9355420 -672913.4   1345845 1345945  
Roots 0.6531706 0.9084052 -655906.3 1311831 1311931 

Scaling 0.7944488 0.9084052 -655906.3 1311831 1311931 

      For n = 500,000, the values of 11φ̂  and 22φ̂  are decreasing after modifying the data using Roots process, but 11φ̂  is increasing 

after modifying the data using Scaling process. This means that the scaling process is good for 11φ̂  when increasing the number 
of observations. Also, as in  n =10,000, the values of Loglikelihood, AIC and BIC is decreasing after modifying the data. This 
also reflects that these measures are good after modifying the binary correlated outcomes Big data. 
 

B. VGAM 
Approximate Chi-squares for Nonparametric Effects ( n = 10,000 ) 
Coefficients Chisq Pvalue Coefficients Chisq Pvalue Coefficients Chisq Pvalue 
s(x1):1       1.8992 0.59313 s(x2):1       4.0055 0.260755 s(x3):1       4.0041 0.260523 
s(x1):2       6.9189 0.07237 s(x2):2       4.4297 0.219104 s(x3):2       3.8802 0.275484 
 

Measures x1 x2 x3 
Residual deviance 27246.69 27247.65 27247 
Loglikelihood -13623.35 -13623.83 -13623.5 

 
 
Approximate Chi-squares for Nonparametric Effects (n = 500,000 ) 

Coefficients Chisq Pvalue Coefficients Chisq Pvalue Coefficients Chisq Pvalue 
s(x1):1       7.2587 0.064097 s(x2):1       3.4349 0.32925 s(x3):1       5.9847 0.112357 
s(x1):2       4.6824 0.196549 s(x2):2       4.1404 0.24668 s(x3):2       18.5355 0.000339 *** 

 
Measures x1 x2 x3 
Residual deviance 1366441 1366445 1366427 
Loglikelihood -683220.5 -683222.3 -683213.4 
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   Dispersion parameter for binomialff family =1. For the two correlated binary Big data, the independent variable X3 has the 
lowest residual deviance, this reflects the importance of this variable to the model. Also, has a significant effect with 2nd 
additive predictor in the case of 500,000 observations. But there are not one of the other independent variables X1 , X2 have 
significant effects, with 5% significant level. For Loglikelihood value, the independent variable X1 has the lowest value in the 
case of 10,000 observations. While the independent variable X3 has the lowest value in the case of 500,000 observations. 
 

V. CONCLUSION 
   This paper presents the mathematical form for estimating and modifying the dispersion parameters for the outcome correlated 
binary (0,1) Big data, with scalar and matrix values, in Bivariate case. The effect of dispersion estimates on the outcome 
correlated binary Big data is indicated. The marginals of two correlated binary outcomes variables effect on the values of 
estimates of dispersion parameters. Using these property, we can motivate the tends of estimates to close to the unity. The 
program R and its packages are used to generate and fit the Big data. 
    Roots and Scaling methods are used to modify the outcome correlated binary Big data. We have found that Scaling and Roots 
processes have similar results, and good effects only for binary Big data. Since the manner is different when deal with small 
obsevations. 
 

ACKNOWLEDGMENTS: 
   For Al-Obour High Institute For Management & Informatics.  
 

REFERENCES 
 [1]  McCullagh, P. and Nelder, J. (1989).  Generalized linear models (second edition), Chapman and Hall, London, United 

Kingdom. 
[2]  Smith, P. and Heitjan, F. (1993). Testing and adjusting for departures from nominal dispersion in generalized linear models, 

Applied Statistics 42, 1 : pp 31–34. 
[3] Cook R. and Ng, E. (1997). A logistic-bivariate normal model for overdispersed two-state Markov process, Biometrics 53, 1 

: 358-364. 
[4]  Saefuddin, A. Setiabudi, A. and Achsani, N. (2011). The effect of overdispersion on regression based decision with 

application to Churn Analysis on Indonesian Mobile Phone Industry, European Journal of Scientific Research 60, 4 : 584-
592. 

[5]  William, D. (1982). Extra-binomial variation in logistic linear models, Applied Statistics 31 : 144-148. 
[6]  Collett, D. (2003). Modeling binary data (Second edition), Chapman and Hall, London, United Kingdom. 
[7] Davila, E., Lopez L. and Dias, G. (2012).  A statistical model for analyzing interdependent complex of plant pathogens, 

Revista Colombiana de Estadistica Numero especial en Bioestadistica 35, 2 : 255-270. 
[8]  Casella, G. and Berger , R. (2002).  Statistical inference (second edition), Duxbury Press, Florida, United States. 
[9]  Hurvich, C. and Tsai, C. (1989). Regression and time series model selection in small samples, Biometrika, 76 : 297–307. 
[10] Yee, T. and  Wild,  C. (1996). Vector generalized additive models. Journal of the Royal Statistical Society, Series B, 

Methodological, 58 : 481–493. 
[11]  Yee, T. and Hastie, T. (2003). Reduced-rank vector generalized linear models. Statistical Modelling, 3 :15–41. 
[12] Yee, T. (2004). A new technique for maximum-likelihood canonical Gaussian ordination. Ecological Monographs, 74 : 

685–701. 
[13]  Yee, T. (2006).  Constrained additive ordination. Ecology, 87 : 203–213. 
[14] Yee, T. and Stephenson, A. (2007). Vector generalized linear and additive extreme value models. Extremes, 10 : 1–19. 
[15] Yee, T. (2008). The VGAM Package. R News, 8 : 28–39. 
[16] Yee, T. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32 : 1–34. 
[17] Yee, T. (2014). Reduced-rank vector generalized linear models with two linear predictors. Computational Statistics and 

Data Analysis, 71 : 889–902. 
[18] Yee, T. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer. 
[19] Elsayed, A. Islam, M. and Alzaid, A. (2013). Estimation and test of measures of association for correlated binary data, 

Bulletin of the Malaysian Mathematical Sciences Society 2, 36, 4 : 985-1008. 
[20] Elsayed, A. (2016). A new approach for dispersion parameters. Journal of Applied Mathematics and Physics (JAMP) 4, 8 : 

1554-1566.   
 
 

 
  


	Scaling Outcome Correlated Binary Big Data Using Estimates of Bivariate Dispersion Parameters

