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Abstract 
This paper proposes two auto-regression auction formats namely, simple autoregression and multiple autoregression auctions. 

Both auto-regression auctions use the valuable information available in both past auctions and current auction to predict the 

start price, recommended price and reserve price of the current auction’s object which allow auctioneers to maximize the 

current auction’s revenue. In simple autoregression auctions (𝑆𝐴𝑅𝐴), an autoregression moving average model 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

is used to predict the start price of the current auction object based on a time series of start bids placed in past auctions, and 

predict the recommended object price of the current auction based on the time series of bids placed by all bidders during the 

current auction. The reserve price that can be accepted by the seller of the object in the current auction is predicted using 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) based on the highest bids placed by the winners of past auctions. In multiple auto-regression auctions (𝑀𝐴𝑅𝐴), 

the auction runs in multiple rounds where the start price of the first round in the current auction is predicted based on a time 

series of start bids placed in past auctions using 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model. The temporary recommended price of the auction object 

in each round of the current auction is predicted using 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model based on a time series of all bids placed in the same 

round during the current auction. The temporary reserve price of the auction object in each round of the current auction is 

calculated based on a time series of bids placed in the same round of past auctions. The start price of each round is based on 

the reserve price of the auction object in the previous round and on a time series of past start bids in the same round of past 

auctions. At the end of the current auction whether it is SARA or MARA, the winner with the highest bid will pay the average 

of the predicted final recommended price and predicted final reserve price of the current auction object if the final 

recommended price is within the interval of the final reserve price and seller price.  

Keywords: Auctions, Bids, Time Series, Auto-regression Models, Moving Average, Open Auctions, Closed Auctions 

 

 

 
1. Introduction 

Auctions are an important tool to determine a fair market value through competitive bidding and allocation of 

commodities and financial assets to individuals, organizations, and firms (Robert A. Feldman et al., 1993). Selling 

an item for a fair price is the main objective of auctions. The determination of an auction winner in conventional 

auctions such as the English auction is very simple as it only requires the identification of the bidder with highest 

bid price.  The motivation of this paper is that the market value determined by the highest bid price may not be the 

true value of the auctioned object as the true valuations of buyers are not known. Furthermore, open auction formats 

allow for the possibility that buyers collude. (Graham et al.,1987) argue that such collusion is facilitated in open 

auctions, where buyers can directly inspect one another's behaviour. Also, in closed auctions buyers can collude 

by either making deals or obtain secret information about other bidders. In other words, open auctions and closed 

auctions do not allow to determine the fair market price to be paid by the winner of the auctioned object as the true 

valuations of the buyers are unknown and the private information that leaked to the buyers are also unknown. 

Hence, prediction of the fair market price is required based on the past bids placed by all buyers participated in the 

auction. Based on the above unknowns, the main objective of this paper is to introduce a new auction format that 

we believe it determines a fair market price of the auctioned object. It is worth noting that the theoretical model of 

regression auctions presented in this paper was not experimented in the real world and thus the difficulties of 
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applying this model in real life still unknown. It is well known that there are many types of auctions namely, the 

English auction is an open outcry ascending auction where bids start from lower price and reaches the highest 

price. Bidders that have an interest in the auctioned item start placing bids with the auctioneer accepting higher 

bids as they come.  

The English auction is fully transparent as information is shared between bidders in real time. Each bidder's 

private information about the common value of the auctioned item is a valuable information to the other bidders 

and is disclosed during the public bidding process (Milgrom, Paul, 2004). The English auction proceeds as follows: 

• The auctioneer starts the auction by an opening bid price. If no bidder accepts this price the auctioneer either 

lowers the starting price or allow bidders to bid at lower price. This must be arranged with the owner of the 

auctioned item.  

•  Bidders compete by placing bids in a highly increasing manner. 

•  The highest bid price at any moment is the standing bid until it is replaced by a higher bid. 

•  If no rival bidder places a bid with a higher price than the standing bid within the time allowed by the auctioneer, 

the bidder with the standing bid is declared as a winner. 

The Dutch Auction is also an open outcry descending price auction or clock auction where the bidding starts from 

the highest price and reaches the lower price but not less than the predetermine reserved price (Li, Zhen, 2011). 

The strategy in Dutch auction the auctioneer starts with a high price and gradually declines this price. Each bidder 

watches the price as it declines until it reaches a point where a bidder or a rival bidder claim by shouting “it is 

mine” and the auction ends. The Vickery auction is known as Second price sealed-bid auction. None of the bidders 

know what the other is offering. The bidder with the highest price wins, but only pays the value of the next highest 

bid (Mierendorff, Konrad, 2013). The most important feature of these auctions is that each bidder's winning 

strategy is to bid according to their true valuation of the item; this auction mechanism is thus incentive compatible. 

It is also a Pareto efficient allocation mechanism (Rothkopf et al, 1990). In the First-Price auction all bidders 

simultaneously submit sealed bids so that no bidder knows the bid of any other participant. The highest bidder 

pays the price that was submitted (Krishna et al., 2002). In the second price auctions the highest bidder wins but 

only pays the price equal to the second-highest bid. In double auction multiple sellers ask their prices and multiple 

buyers submit their bids. The auctioneer chooses a starting price 𝑝 and all sellers ask less than price 𝑝 sell and all 

buyers bid than price p buy. The Japanese auction is also called ascending clock auction is a 

dynamic auction format. It proceeds in the following way (Milgrom et al., 2014): 

• An initial price is displayed. This is usually a low price - it may be either 0 or the seller's reserve price. 

• All buyers that are interested in buying the item at the displayed price enter the auction arena. 

• The displayed price increases continuously, or by small discrete steps (e.g. one cent per second). 

• Each buyer may exit the arena at any moment. 

• No exiting buyer is allowed to re-enter the arena. 

• When a single buyer remains in the arena, the auction stops. The remaining buyer wins the item and pays the 

displayed price. 

In a Scottish auction (or also time-interval auction), all bidding should be completed within a certain time interval 

(Hultmark et al., 2002).  This ruling provides the bidders an appropriate amount of time for consideration. Speed 

is not important in this type of auction. In the simultaneous multiple round auctions (SAR) all bidders bid on all 

items in the same time, the starting price is low and the winner pays the highest price. This auction runs in rounds 

and after each round of bids the highest bid for each item is announced and a new round begins with new 

information (Bachler, M et al., 2017). 
 

2.  Related Work 

2.1. Quantile regression methods for first-price auctions 

In this paper a quantile-regression model for first-price auctions with symmetric risk-neutral bidders under the 

independent private-value paradigm is proposed. Quantile regression for the bids can be generated from private-

value quantile regression and its derivative with respect to the quantile level (Nathalie Gimenes, 2022). 
 

2.2.  Auction optimization using regression trees and linear models as integer programs 
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This paper solves the problem of finding the optimal ordering of sequential auctions using machine learning 

techniques. Two types of optimization methods are proposed namely, black-box best-first search approach, and a 

novel white-box approach that maps learned regression models to integer linear programs (ILP), which can then 

be solved by any ILP-solver It also uses regression models based on data from historical auctions to predict the 

expected value of orderings for new auctions (Sicco Verwer et al., 2017). 

3. Motivation 

All the above auction formats do not use regression models to help auctioneers tune auction parameters to 

maximize the auction revenue. The information available from historic auctions and bids placed by bidders in the 

current auction are used by an autoregression moving average model 𝐴𝑅𝑀𝐴(𝑝, 𝑞)to improve auctions revenue. 

The auction optimization method that uses regression trees and linear models optimizes the ordering of new 

sequential auctions based on past historic auctions which do not tune the auction’s parameters for the auctioneer 

to maximize the auction’s revenue.  

4. Autoregressive Model 

An auto-regression model 𝐴𝑅(𝑝) determines the value of a process at an arbitrary time 𝑖 using a linear combination 

of the 𝑝-last values (Ullrich, T., 2021): 

𝑦𝑖 = ∑ ∅𝑗𝑦𝑖−𝑗 + 𝜀𝑖
𝑝
𝑗=1                       (1) 

The value of 𝑝 indicates the order of the 𝐴𝑅 model, the weights ∅𝑖of the linear combination are the model 

parameters and 𝜀𝑡 is random error assumed to be 𝑁(0,1).  
 

5. Moving Average 

A 𝑞-order moving average (𝑀𝐴) process, denoted 𝑀𝐴(𝑞) takes the form (Charles Zaiontz, 2023): 

𝑦𝑖 = 𝜇 + ∑ 𝜃𝑗𝜀𝑖−𝑗
𝑞
𝑗=1 + 𝜀𝑖                       (2) 

Where 𝑖 is an arbitrary time such that the value of 𝑦 at time 𝑖 is a linear combination of past errors. These error 

terms are assumed to be independently distributed where 𝜀𝑖~𝑁(0, 𝜎2). 
 

6. Autoregressive Moving Average  

An autoregressive moving average (ARMA) process consists of both autoregressive and moving average terms. If 

the process has terms from both 𝐴𝑅(𝑝) and 𝑀𝐴(q) process, then the process is called 𝐴𝑅𝑀𝐴(p, q) and can be 

expressed as follows: 

𝑦𝑖 = 𝜀𝑖 + ∑ ∅𝑗𝑦𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1                        (3) 

To estimate the model parameters ∅𝑗 , ∀ 𝑗 = 1,2 … . . , 𝑝 and 𝜃𝑗  , ∀ 𝑗 = 1,2 … . . , 𝑞 we use the least squares 

method (Bowler, Ben et al., 2020). 

Let: 

 𝜀𝑖 =  𝑦𝑖 − (∑ ∅𝑗𝑦𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1 )                      (4) 

Minimise: 

                    ∑  𝜀𝑖
2𝑛

𝑖=𝑝+1 = ∑ (𝑦𝑖 − (∑ ∅𝑗𝑦𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1 ))2𝑛

𝑖=𝑝+1                         (5) 

Let 𝑋 be (𝑛 − 𝑝) × (𝑝 + 𝑞) matrix such that the 𝑖𝑡ℎ row is: 

[∅1𝑦𝑖−1 + ∅2y𝑖−2 + ⋯ + ∅𝑝y𝑖−𝑝 + 𝜃1𝜀𝑖−1 + 𝜃2𝜀𝑖−2 + ⋯ + 𝜃𝑞𝜀𝑖−𝑞] 

Let 𝑌 be 𝑛 − 𝑝 ×  1 column vector such that: 

𝑌 = [𝑦𝑝+1𝑦𝑝+2 … . 𝑦𝑛]𝑇                            (6) 

Let 𝜑 be 𝑝 × 1 coulmn vector such that: 
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     𝜑 = [∅1∅2 … … . ∅𝑝𝜃1𝜃2 … … 𝜃𝑞]𝑇                         (7) 

Then the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) can be represented as follows: 

𝑌 =  𝑋𝜑 +  𝜀                               (8) 

Therefore:                        

𝜑 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌                          (9) 

7. Simple Auto-Regression Auction (SARA) 
Setting the starting price is critical to attract buyers and generate revenue from an auction. Too high starting 

price limits the buyers’ interest. How to set the start price of an auction object? How to set the reserved price 

accepted by the seller? To set the starting price some auctions use the 30% fair market value as a starting price 

for bids. Some auctioneers find similar objects and compare prices across websites and in stores if possible. This 

helps the auctioneer determines what the item typically sells for. The regression auction format 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

predicts the starting price of the auction object based on a time series of start bids placed in past auctions. Also, 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) predicts the reserved price 𝑟̂ of the auction object based on the past highest bids placed by the 

winners in past auctions. The recommended price 𝑏̂ of the current auction object is predicted based on all bids 

placed by all bidders during the current auction. The prediction of the reserved price protects the seller from 

setting a price lower than the true value of the object. The auction proceeds as follows:  

• Buyers compete by placing higher bids based on the predicted start price 𝑣 using 𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

• At the end of the auction the recommended price 𝑏̂ is predicted using 𝐴𝑅𝑀𝐴(𝑝, 𝑞) based on a time series of all 

bids placed by all bidders including the highest bid placed by the winner. 

• At the end of an auction, the reserve price of the object 𝑟̂ to be accepted by the seller is predicted using 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) based on a time series of past highest bids placed by the winners of past auctions. 

• The winner with the highest bid in the current auction will pay the object price 𝑝 such that: 

𝑝 =
𝑟̂+𝑏̂

2
            (10) 

 where 𝑏̂ ∈ [𝑟̂ , 𝑠] where 𝑠 is the seller price. 

 

7.1. Start Price Prediction 

An autoregression moving average 𝐴𝑅𝑀𝐴(𝑝. 𝑞) model uses a series of start bids that were placed in past 

auctions to predict the starting price 𝑏 for the current auction such that: 

𝑣 = 𝜀𝑖 + ∑ ∅𝑗𝑣𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1             (11) 

Let: 

𝑣 = 𝑣𝑖 = ∑ ∅𝑗𝑣𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1                   (12) 

Where: 

𝑣: is the true value of the start price for the current auction. 

𝑣: is the estimated value of the start price for the current auction. 

𝑣𝑖−𝑗: is the start bid price placed at the 𝑗𝑡ℎpast auction. 

7.2. Recommended Object Price Prediction 

The autoregression moving average 𝐴𝑅𝑀𝐴(𝑝. 𝑞) model represents the times series of all bids placed by the 

bidders of the current auction to predict the recommended price 𝑏̂ of the auction object such that: 

        𝑏 = 𝜀𝑖 + ∑ ∅𝑗𝑏𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1                      (13)  

Let: 
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        𝑏̂ = ∑ ∅𝑗𝑏𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1                               (14) 

 

7.3. Reserved Price Prediction 

 The autoregression moving average 𝐴𝑅𝑀𝐴(𝑝. 𝑞) model uses a series of highest bids that were placed by the 

winners of past auctions to predict the reserve price 𝑟̂ to be used by the auctioneer such that: 

𝑟 = 𝜀𝑖 + ∑ ∅𝑗𝑟𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1                       (15) 

Let: 

𝑟̂ = 𝑟̂𝑖 = ∑ ∅𝑗𝑟𝑖−𝑗
𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑞
𝑗=1               (16) 

Where: 

𝑟: is the true reserve price of the current auction object. 

𝑟̂: is the predicted reserve price of the current auction object. 

𝑟𝑖−𝑗: is the highest bid price placed by the winner of the 𝑗𝑡ℎpast auction. 

 

7.4. Game Theoretic Analysis 

Simple regression auctions can be analysed as a game where the players are buyers and sellers. Sellers ask 

for bids and buyers place their bids. The interesting problem is to find Nash equilibrium. 

 

Assume:  

• The seller asks price 𝑠. 

• The auctioneer predicts reserve price 𝑟̂. 

• The auctioneer predicts recommended price 𝑏̂. 
• The true value of the buyer is 𝐵. 
• The true value of the seller is 𝑆. 

The auctioneer sets the following rules: 

• If 𝑏̂ < 𝑟̂ then no trade.  

• If 𝑟̂ ≤ 𝑏̂ < 𝑠 then the buyer pays 𝑝 =
(𝑏̂+𝑟̂)

2
. 

• If  𝑏̂ ≥ 𝑠 then the buyer pays 𝑝 =
(𝑏̂+𝑠)

2
. 

 

The utility of the seller is: 

•   If 𝑠 > 𝑏̂ then utility is 0. 

•   If 𝑠 ≤ 𝑏̂ then utility 𝑝 − 𝑆. 

 

The utility of the buyer is: 

• If 𝑏̂ > 𝑠 then utility is 0. 

• If 𝑏̂ ≤ 𝑠 then utility is 𝐵 − 𝑝. 

 

The Nash equilibrium exists with 

𝑏̂ = 𝑟̂ = 𝑠 ∈ [𝐵, 𝑆] otherwise, there will be no equilibrium. 
 

8.  Multiple Auto-Regression Auctions (MARA) 
Sometimes it is hard to determine the start price of an auction. For example, it is hard to determine the starting 

price of vacation packages, event tickets, and one-of-a-kind memorabilia. So, a more sophisticated regression 
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auction format is required. The multiple round regression auction (𝑀𝐴𝑅𝐴) works in rounds and predicts for each 

round a start price, temporary object price and temporary reserve object price. In the final round, 𝑀𝐴𝑅𝐴 predicts 

the final recommended object price and final reserve object price of the current auction. The winner with the 

highest bid will pay the average of the final recommended object price and final reserve object price if the highest 

bid of the winner is within the interval of final reserve object price and seller price. The 𝑀𝐴𝑅𝐴 works as follows: 

• The auctioneer creates a bid time series of the first round of past auctions using the start bids 

𝑣𝑖−1,𝑗
1 , 𝑣𝑖−2,𝑗

1 … , 𝑣𝑖−𝑝,𝑗
1  placed by multiple buyers at multiple times such that: 

                       𝑣𝑖𝑗
1 = ∑ ∅ℎ𝑣𝑖−ℎ,𝑗

1𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

1𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                      (17) 

Where: 

𝑣𝑖−ℎ,𝑗
1 : is the start price of the first round at time ℎ of the 𝑗𝑡ℎpast auction. 

• The auctioneer predicts the start price 𝑣𝑖,𝑗
1  of the first round of the 𝑗𝑡ℎ past auction using 𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

• The auctioneer calculates the predicted average start price 𝑣̅1 of the first round of the current auction using the 

𝑚 past auctions as follows: 

𝑣̅1 = 𝑣̅𝑖
1 = 

1

𝑚
 ∑ 𝑣𝑖,𝑗

1𝑚
𝑗=1                    (18) 

• The buyers place their bids based on the predicted average start price 𝑣̅1. 

 

At the end of the first round the auctioneer does the following: 

• Create a bid time series of the first round of the current auction where 𝑏𝑖−1
1 , 𝑏𝑖−2

1 … , 𝑏𝑖−𝑝
1  are the bids placed by 

multiple buyers at multiple times such that: 

𝑏̂1 =  𝑏̂𝑖
1 = ∑ ∅𝑗𝑏𝑖−𝑗

1𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

1𝑞
𝑗=1                      (19) 

where: 𝑏𝑖−ℎ
1 is the bid in the first round of the current auction placed at time ℎ. 

• Use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) to predict the temporary recommended price 𝑏̂1.    

• Create a bid time series of the first round of 𝑚 past auctions where 𝑟𝑖−1,𝑗
1 , 𝑟𝑖−2,𝑗

1 … , 𝑟𝑖−𝑝,𝑗
1  are the bids placed by 

multiple buyers at multiple times in the 𝑗𝑡ℎ past auction such that: 

𝑟̂𝑖𝑗
1 = ∑ ∅ℎ𝑟𝑖−ℎ,𝑗

1𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

1𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                 (20) 

𝑟𝑖−ℎ,𝑗
1 : is the temporary reserve price of the first round in the 𝑗𝑡ℎ past auction placed at time ℎ. 

• Use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) to predict the temporary reserve object price 𝑟̂𝑖,𝑗
1  of the first round in the current auction based 

on the 𝑗𝑡ℎ past auction. 

• Calculate the average temporary reserve object price 𝑟̂1 of the first round in the current auction based on the 𝑚 

past auctions as follows: 

𝑟̂1 =
1

𝑚
 ∑ 𝑟̂𝑖,𝑗

1𝑚
𝑗=1                        (21) 

• The predicted temporary reserve price 𝑟̂1 will be used as the start price for round 2. 

For round 𝑘 = 2 𝑡𝑜 𝑁 − 1: 

The auctioneer uses the predicted temporary reserve price 𝑟̂𝑘−1 to predict the start price 𝑓𝑘 of the current auction 

object in round 𝑘 as follows: 

• Create a bid time series of the 𝑘𝑡ℎ round start prices 𝑣𝑖−1,𝑗
𝑘 , 𝑣𝑖−2,𝑗

𝑘 … , 𝑣𝑖−𝑝,𝑗
𝑘  for the 𝑚 past auctions using the bids 

placed by multiple buyers at multiple times such that: 

𝑣𝑖𝑗
𝑘 = ∑ ∅ℎ𝑣𝑖−ℎ,𝑗

𝑘𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

𝑘𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                      (22) 

𝑣𝑖−ℎ,𝑗
𝑘 : is the starting price of the 𝑘𝑡ℎ round at time ℎ of the 𝑗𝑡ℎpast auction.  

• Use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) to predict the start price 𝑣𝑖,𝑗
𝑘  of the 𝑘𝑡ℎ round of the current auction based on the bid time series 

of the 𝑘𝑡ℎ round of the 𝑗𝑡ℎ past auction. 
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• Calculate the average start price 𝑣̅𝑘of the 𝑘𝑡ℎ round of the current auction based on the 𝑘𝑡ℎ round of the 𝑚 past 

auctions as follows: 

𝑣̅𝑘 = 𝑣̅𝑖
𝑘 = 

1

𝑚
 ∑ 𝑣𝑖,𝑗

𝑘𝑚
𝑗=1                   (23) 

• Calculate the start price 𝑓𝑘 of round 𝑘 of the current auction as: 

     𝑓𝑘 =
𝑣̅𝑘+𝑟̂𝑘−1

2
                      (24) 

• The buyers place their bids in round 𝑘 based on the average predicted start price 𝑓𝑘. 
At the end of round 𝑘 the auctioneer does: 

• Create a bid time series of the 𝑘𝑡ℎ round of bids 𝑏𝑖−1
𝑘 , 𝑏𝑖−2

𝑘 … , 𝑏𝑖−𝑝
𝑘  that are placed by multiple buyers at multiple 

times of the 𝑘𝑡ℎ round in the current auction such that: 

𝑏̂𝑘 = ∑ ∅𝑗𝑏𝑖−𝑗
𝑘𝑝

𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗
𝑘𝑞

𝑗=1            (25) 

𝑏𝑖−ℎ
𝑘 : is the bid placed in the 𝑘𝑡ℎ round of the current auction at the ℎ𝑡ℎtime. 

• Predict the temporary recommended object price 𝑏̂𝑘 of round 𝑘 in the current auction using 𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

• Create a bid time series using the past bids 𝑟𝑖−1,𝑗
𝑘 , 𝑟𝑖−2,𝑗

𝑘 … , 𝑟𝑖−𝑝,𝑗
𝑘  placed by the buyers of the 𝑘𝑡ℎ round at 

multiple times of the 𝑗𝑡ℎ past auction such that: 

 𝑟̂𝑖𝑗
𝑘 = ∑ ∅ℎ𝑟𝑖−ℎ,𝑗

𝑘𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

𝑘𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                (26) 

𝑟𝑖−ℎ,𝑗
𝑘 : is the temporary reserve price of the current auction object in the 𝑘𝑡ℎ round of the 𝑗𝑡ℎpast auction. 

•  Use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) to predict the temporary reserve object price 𝑟̂𝑖,𝑗
𝑘  of the 𝑘𝑡ℎ round in the current auction using 

based on the past bids placed in the 𝑗𝑡ℎ past auction.   

• Calculate the average reserve object price 𝑟̂𝑘 of the current auction object based on the 𝑚 past auctions as 

follows: 

      𝑟̂𝑘 = 
1

𝑚
 ∑  𝑟̂𝑖,𝑗

𝑘𝑚
𝑗=1                      (27) 

• Let 𝑟̂𝑘−1 = 𝑟̂𝑘.                         (28) 

• Continue the For loop. 

For last round 𝑁: 

The auctioneer uses 𝑟̂𝑁−1 to calculate the start price 𝑓𝑁for the last round 𝑁 as follows: 

• Create a bid time series for the 𝑁𝑡ℎ round of the past auctions using the start bids 𝑣𝑖−1,𝑗
𝑁 , 𝑣𝑖−2,𝑗

𝑁 … , 𝑣𝑖−𝑝,𝑗
𝑁  placed by 

multiple buyers at multiple times such that: 

                𝑣𝑖𝑗
𝑁 = ∑ ∅ℎ𝑣𝑖−ℎ,𝑗

𝑁𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

𝑁𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                  (29) 

𝑣𝑖−ℎ,𝑗
𝑁 : is the start price of the 𝑁𝑡ℎ  round at time ℎ of the 𝑗𝑡ℎpast auction. 

• Use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) to predict the start price 𝑣𝑖𝑗
𝑁 of the 𝑁𝑡ℎ  round of the current auction based on the 𝑗𝑡ℎ past auction. 

• Calculate the average start price 𝑣̅𝑁of the 𝑁𝑡ℎ  round of the 𝑚 past auctions as follows: 

𝑣̅𝑁 = 𝑣̅𝑖
𝑁 = 

1

𝑚
 ∑ 𝑣𝑖,𝑗

𝑁𝑚
𝑗=1                        (30) 

• Calculate the start price 𝑓𝑁 for round 𝑁 of the current auction as follows: 

𝑓𝑁 =
𝑟̂𝑁−1+𝑣̅𝑁

2
                         (31) 

• Buyers place their bids based on the predicted start price 𝑓𝑁. 

• Create the bid time series of the 𝑁𝑡ℎ round of the current auction based on the bids 𝑏𝑖−1
𝑁 , 𝑏𝑖−2

𝑁 … , 𝑏𝑖−𝑝
𝑁  placed by 

multiple buyers at multiple times such that: 

𝑏̂𝑁 = 𝜀𝑖
𝑁 + ∑ ∅𝑗𝑏𝑖−𝑗

𝑁𝑝
𝑗=1 + ∑ 𝜃𝑗𝜀𝑖−𝑗

𝑁𝑞
𝑗=1                     (32) 
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𝑏𝑖−ℎ
𝑁 : is the bid price of the 𝑁𝑡ℎround at ℎ𝑡ℎtime in the current auction. 

• Predict the final recommended object price  𝑏̂𝑁 using 𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

• Create a bid time series of the highest bids placed by multiple buyers in the 𝑁𝑡ℎ round of the 𝑗𝑡ℎpast auctions as 

follows:   

𝑟𝑖−1,𝑗
𝑁 , 𝑟𝑖−2,𝑗

𝑁 , … … . . … 𝑟𝑖−𝑝,𝑗
𝑁  

Therefore: 

 𝑟̂𝑖𝑗
𝑁 = ∑ ∅ℎ𝑟𝑖−ℎ,𝑗

𝑁𝑝
ℎ=1 + ∑ 𝜃ℎ𝜀𝑖−ℎ,𝑗

𝑁𝑞
ℎ=1 , ∀𝑗 = 1,2, … … … . . , 𝑚                 (33) 

𝑟𝑖−ℎ,𝑗
𝑁 : is the highest bid price placed in the final round 𝑁 at the ℎ𝑡ℎ time of the 𝑗𝑡ℎ past auction. 

• Predict the final reserve price 𝑟̂𝑖,𝑗
𝑁  of the 𝑁𝑡ℎ round of the current auction based on the 𝑁𝑡ℎ round of the 𝑗𝑡ℎ auction 

using 𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

• Calculate the average final reserve price 𝑟̂𝑁in the last round 𝑁 of the current auction based on the 𝑚 past auctions 

as follows: 

𝑟̂𝑁 =  
1

𝑚
 ∑ 𝑟̂𝑖,𝑗

𝑁𝑚
𝑗=1                     (34) 

 

• The winner with the highest bid will pay the object price 𝑝: 

𝑝 =
𝑟̂𝑁+𝑏̂𝑁

2
                      (35) 

 where 𝑏̂𝑁 ∈ [𝑟̂𝑁  , 𝑠] where 𝑠 is the seller price. 

 

8.1. Game Theoretic Analysis 

 Multiple round regression auctions can be analysed as a game where the players are buyers and sellers. Sellers 

ask for bids and buyers place their bids. The interesting problem is to find Nash equilibrium. 

Assume:  

• The seller price is 𝑠. 

• The true value of the buyer is 𝐵. 

• The true value of the seller is 𝑆. 

In round 𝑘:  

• The temporary recommended object price is 𝑏̂𝑘 .  
• The temporary reserve object price is 𝑟̂𝑘. 

• If 𝑏̂𝑘 < 𝑟̂𝑘 then the buyer quits the auction.  

• If 𝑏̂𝑘 ≥ 𝑟̂𝑘 then the buyer continues to round 𝑘 + 1. 

In last round 𝑁:  

• If 𝑏̂𝑁 < 𝑟̂𝑁 then no trade.  

• If 𝑟̂𝑁 ≤ 𝑏̂𝑁 < 𝑠 then the buyer pays 𝑝 =
(𝑏̂𝑁+𝑟̂𝑁)

2
. 

• If 𝑏̂𝑘 ≥ 𝑠 then the buyer pays 𝑝 =
(𝑏̂𝑁+𝑠)

2
. 

 

The utility of the seller is: 

• If 𝑠 > 𝑏̂𝑁 then utility is 0. 

• If 𝑠 ≤ 𝑏̂𝑁 then utility 𝑝 − 𝑆. 

 

The utility of the buyer is: 

• If 𝑏̂𝑁 > 𝑠 then utility is 0. 

• If 𝑏̂𝑁 ≤ 𝑠 then utility is 𝐵 − 𝑝. 
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The Nash equilibrium exists with 

𝑏̂𝑁 = 𝑟̂𝑁 = 𝑠 ∈ [𝐵, 𝑆] otherwise, there will be no equilibrium. 

9.  Conclusion 
In this paper two new autoregression auction formats are proposed namely, simple autoregression auction 

(𝑆𝐴𝑅𝐴) and multiple round autoregressive auctions (𝑀𝐴𝑅𝐴). They both use autoregressive moving average 

𝐴𝑅𝑀𝐴(𝑝 , 𝑞) to predict the auction’s start price, the recommended object price, the reserve object price and 

predict the final object price that will be paid by the winner with the highest bid based on bids placed in past 

auctions and the bids placed by bidders in the current auction. The auctioneer can either adopt 𝑆𝐴𝑅𝐴 or 𝑀𝐴𝑅𝐴 

based on the auction objects. 𝑀𝐴𝑅𝐴 is considered an iterative implementation of 𝑆𝐴𝑅𝐴 where the reserve price 

of any round is the start price of the next round. Therefore, 𝑀𝐴𝑅𝐴 can be converted to 𝑆𝐴𝑅𝐴 in any round of the 

auction. Also, 𝑀𝐴𝑅𝐴 can easily be more simplified by eliminating some of its steps that makes this auction format 

easily to implement. The bids of past auctions is an important parameter for both 𝑆𝐴𝑅𝐴 and 𝑀𝐴𝑅𝐴 so a future 

study is needed to determine how many past auctions is required to predict a good start price, recommended object 

price, reserve object price and which past auctions to be chosen. 
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