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Abstract 
In this paper, a new distribution depends on the hyperbolic sine family of distributions with inverted exponential distribution 

as will be generated. The hyperbolic sine family of distributions was introduced by Kharazmi and Saadatinik (2016).  They 

studied some properties of this family and obtained the estimates of its parameters by different methods. Various properties of 

the proposed distribution including explicit expressions for the moments, quantiles, moment generating function, failure rate 

function, mean residual lifetime, order statistics and expressions of entropies are derived. Superiority of this model is proved 

in some simulations and application of Survival Analysis of Neck cancer disease. 
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1. Introduction 

In many applied areas such as lifetime analysis and other fields, there is strong need to develop the classical 

distributions. So, different methods to generating new families of distributions are defined. These include; 

Azzalini’s skew family by Azzalini (1985), beta-G by Eugene et al. (2002). Recently, Kharazmi and Saadatinik 

(2018) discussed the hyperbolic sine family of distributions, Chakraborty and Handique (2017) investigated the 

generalized Marshall-Olkin Kumaraswamy-G family and generalized inverted Weibull family by Hemeda et. al 

(2019) and more. 

According to Kharazmi and Saadatinik (2018), the hyperbolic Sine (HS) family with cumulative CDF is 
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Where, 𝐺(𝑥) and 𝑔(𝑥) are the CDF and PDF for any random variable, respectively and the hyperbolic sine function
( ( ))Sinh x is defined as 
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Using series expansion theorem, 𝑆𝑖𝑛ℎ (𝑥) takes the following formula; 
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In our study, we will take 𝐺(𝑥) is the CDF of the inverted exponential distribution and 𝑔(𝑥) its PDF. 

Dey (2007) studied the inverted exponential (IE) distribution with CDF and PDF are given by 
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2. The New Model 

This section contributes the representation of Sinh inverted exponential (SIEDD) distribution. The CDF, 

reliability, hazard rate, cumulative hazard rate functions are deduced and discussed analytically. Above that; 

statistical measures will be discussed. 

 

By substituting from (5) and (6) into (1) and (2), then the SIEDD CDF and PDF will be 
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Using (1), the PDF will be in the following form 
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The survival and hazard rate (ℎ𝑟) functions are 
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Figure 2: Survival and Hazard rate functions of the new model. 

3. Useful Statistical Properties 

Various statistical measures will be deduced such as moments, moment generating function, incomplete moments 

and mean residual life time, quantile function, median, mode, entropies, skewness and kurtosis of SIEDD 

distribution in this section. 

 

3.1 The Moments About Mean 

From equations (3), (4), we can obtain the probability density function in the series form as the following; 
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By substituting from (13) into the last equation, the nth moment is written as 
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From the last equation, the 2nd and 3rd and other moments can be calculated. 

The 2nd  and 3rd moments are 
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3.2 Moment Generating Function and Mean Residual Life Time 

The moment generating function of a probability distribution can be derived as follows 
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where, m  is the mth moment about origin. Using (13) then 
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 The mean residual of SIEDD distribution 
( )SIEm t

is determined by 
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Substituting from PDF (13) then 
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3.3 Quantile Function 

The quantile function of SIED, (
1( ) ( )x p F p−=

) is determined by converting (7) as follows: 
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Equation (19) can be solved numerically, the SIEDD random variable X can be generated where p has the uniform 

distribution on the interval [0,1]. 

 

3.4 Skewness and kurtosis 

The skewness ( ) and kurtosis ( ) coefficients based on quantiles are computed from the following formulas: 
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Substituting from (19) into (20) and (21) respectively, we can get some values to the skewness and kurtosis 

coefficients of SIED as represented in Figure 3. 

 

 
Figure 3: Quantile function of SIED with selected values of its parameters. 
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3.5 The Rényi Measure 

The entropy of a random variable 𝑋 is an important measure, it is defined as a measure of variation of the uncertainty 

(see, Rényi (1961)). In this subsection, we discuss Rényi measure. 

The Rényi entropy Re ( )nE 
of a random variable X is defined as  
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4.  Maximum likelihood Estimation of The Parameters 

In this section, the maximum likelihood estimators of the model parameters ℑ = (𝛿, 𝜃)  of SIED from 

complete samples are deduced. Assume 𝑋1 , 𝑋2 , … , 𝑋𝑛   be a simple random sample from SIED with observed 

values 𝑥1 , 𝑥1 , … 𝑥𝑛, the log likelihood function of (8) is obtained as follows 
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Differentiating ( )lnL  with respect to 𝜃, 𝛿 and setting the result equals to zero, the maximum likelihood estimators 

will be gotten. The partial derivatives of ( )lnL  with respect to each parameter are given as 
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The maximum likelihood estimators of the model parameters are determined by solving the non-linear equations 

(24) and (25) simultaneously. These equations can be solved numerically using iterative technique. For interval 

estimation of the parameters, the 2 × 2 observed information matrix 𝐼(Ω) = {𝐼𝑢𝑣} for (𝜃, 𝛿). Under the regularity 

conditions, the known asymptotic properties of the maximum likelihood method ensure that: √𝑛(Ω̂ − Ω)
𝑑
→ 𝑁2(0, 𝐼−1(Ω))  as 𝑛 → ∞ , where 

𝑑
→  means the convergence in distribution, with mean 𝑂 = (0,0)𝑇  and 2 × 2 

covariance matrix 𝐼−1(Ω)  then, the 100(1 − 𝛽)%  confidence intervals for 𝜃 𝑎𝑛𝑑 𝛿  are given, respectively, as 

follows 

𝛿 ± 𝑍𝛽
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√𝑣𝑎𝑟  (𝛿) and 𝜃 ± 𝑍𝛽
2⁄

√𝑣𝑎𝑟  ( 𝜃 ̂), where 𝑍𝛽
2⁄
is the standard normal at 𝛽 2⁄ . The significance level is 

𝛽 2⁄  and the variances of 𝜃, 𝛿 are the diagonal elements of 𝐼−1(Ω) corresponding to the model parameters. 

 

5. Simulation Study 

A simulation study is carried out to investigate the performance of estimators for SIEDD distribution in terms of 

their bias (bias), mean square error (MSE) using maximum Likelihood estimation (MLE) method. Simulated 

procedures can be described as follows: 

Generated samples of sizes n = 30, 50, 100 from SIEDD distribution are generated and parameters are estimated 

using the maximum likelihood estimation method. 10000 such repetitions are made to calculate the bias and mean 

square error (MSE) of these estimates using the formula of estimates for any parameter η by 
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respectively.  

From Table 1, it is observed that; 

i. As sample size 𝑛 increases, bias decreases. That shows accuracy of the MLE of the parameters. 

ii. As sample size 𝑛  increases, MSE decreases. That shows consistency (or preciseness) of the MLE of the 

parameters as shown in figure 4. 
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Table 1: Bias and MSE of MLEs for SIEDD distribution 

 
6. Neck cancer Disease Application 

In this section, the SIED distribution is fitted for a real data. The real data represents the survival times of patients 

suffering from Neck cancer disease. The patients in this group were treated using a combined radiotherapy and 

chemotherapy (CT&RT). The data are 

12.2 23.56 23.74 25.78 31.98  37 41.35 47.38 55.46 58.36 63.47 68.46 

78.26 74.47 81.43 84 92  94 110 112 119 127 130 133 

140 146 155 159 173 179 194 195 209 249 281 319 

339 432 469 519 633 725 817 776 

 

Kumar et al. (2015) fitted this data to the inverted Lindley distribution. We have fitted this data set with SIEDD 

distribution compared with Weibull (W) and inverted exponential (IE) probability distributions. The results of 

 

ˆ 0.3 =  
ˆ 0.1 =  

𝒏 30 50 100 30 50 100 

BIAS -0.10987 -0.1078 -0.1006 -0.0963 -0.0712 -0.0160 

MSE 0.0142 0.0123 0.0022 0.0693 0.0293 0.0053  

1.0ˆ =  
ˆ 0.2 =  

𝒏 30 50 100 30 50 100 

BIAS -0.1099 -0.1037 -0.0097 -0.1963 -0.1960 -0.1960 

MSE 0.1123 0.0184 0.0112 0.0385 0.0274 0.0080  

 
ˆ 0.2 =  

𝒏 30 50 100 30 50 100 

BIAS -0.2099 -0.2099 -0.2098 -0.1961 -0.1959 -0.1959 

MSE 0.0443 0.0441 0.0440 0.0384 0.0384 0.0384  

2.0ˆ =  
ˆ 0.3 =  

𝒏 30 50 100 30 50 100 

BIAS -0.2099 -0.2099 -0.2098 -0.2962 -0.2960 -0.2959 

MSE 0.0443 0.0441 0.0441 0.0877 0.0876 0.0876 
 

5.0ˆ =  
ˆ 0.1 =  

𝒏 30 50 100 30 50 100 

BIAS -0.1400 -0.1100 -0.1100 -0.0905 -0.0453 -0.0150 

MSE 0.1601 0.1601 0.1600 0.0092 0.0092 0.0092  

1.0ˆ =  
ˆ 0.5 =  

𝒏 30 50 100 30 50 100 

BIAS -0.1109 -0.1107 -0.1107 -0.4953 -0.4952 -0.4949 

MSE 0.0123 0.0123 0.0123 0.2453 0.2452 0.2449  

1.0ˆ =  
ˆ 0.1 =  

𝒏 30 50 100 30 50 100 

BIAS -0.1102 -0.1100 -0.1100 -0.0962 -0.0959 -0.0959 

MSE 0.0122 0.0122 0.0121 0.0093 0.0092 0.0092  

5.0ˆ =  
ˆ 0.5 =  

𝒏 30 50 100 30 50 100 

BIAS -0.5099 -0.5099 -0.5099 -0.4960 -0.4959 -0.4952 

MSE 0.2601 0.2600 0.2600 0.2460 0.2495 0.2453 

2.0ˆ =
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estimated values of the parameters (Log-likelihood, AIC, BIC and KS) are listed in  Table 2. The Q-Q plot, 

histogram, fitted PDF and estimated CDF of the SIEDD curve to this data have been shown in Figures 5 and 6 

respectively. The selection criterion is that the lowest Log-likelihood and AIC correspond to the best model fitted. 

The MLEs, AIC, BIC and KS are shown in Table 2. From the Table, we can observe that the SIEDD model shows 

the smaller Log-likelihood, AIC, BIC and KS than other competing distributions. 

 

Table 2:  Statistical measures of fitted models using survival times of patients suffering from Neck cancer disease 

data 
Distribution Estimators LL AIC BIC KS 

SIEDD 𝜃̂ = 1.53 , 𝛿̂ = 7.91 −279.32 564.64 409.13 0.1840 

W 𝛽̂ = 3.07 , 𝛼̂ = 11.26 −288.79 597.43 532.02 0.1752 

IE ˆ 5.47 =  
−480.35 862.71 813.00 0.0637 

 

 

 
Figure 4: The Histogram and fitted models PDF for the data. 

 
Figure 4 shows that; the Neck cancer disease application of the SIEDD distribution provides a better fit than other 

alternative distributions. 

7. Conclusion 

In this article, we have introduced and studied a new probability distribution called sinh inverted exponential 

distribution based on hyperbolic sin generator. The estimates of the parameters are obtained by different methods. 

Various properties of the proposed distribution moments including quantiles, moment generating function, failure 

rate function, mean residual lifetime, order statistics and expressions of entropies are derived. The structural and 

reliability properties of this distribution have been studied and inference on parameters have also been 

mentioned.The estimation of parameters is approached by maximum likelihood methode.We presented a simulation 

study to exhibit the performance and accuracy of maximum likelihood estimates of the SIEDD model parameters. 

The Neck cancer disease real data application is applied to illustrate the efficience and applicability of the SIEDD 

distribution. The application of the SIEDD distribution shows that it could provide a better fit than other alternative 

distributions. Superiority of this model is proved in some simulations and application of Survival Analysis of Neck 

cancer disease. 
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